Optimization Activities on Rotorcrafts Using CFD and Multiobjective Evolutionary Algorithms

Ernesto Benini, Gianluigi A. Misté, University of Padova Rita Ponza, Hit09 S.r.I.

hit09

Università degli Studi

di Padova

In line with the EU environmental objectives for 2020 the **Clean Sky Green Rotorcraft** Programme main objectives are:

- Reduction of CO₂ emission by 26-40% and NO_x emission by 53-65% per flight
- Reduction of the noise perceived on ground by 10 EPNdB, or halving the noise footprint area by 50%

HEAVYcOPTer

- Multi-point (cruise and hover) multi-objective aerodynamic optimization of the engine installation on the AW101 helicopter
- Three different components are separately subjected to the optimization: two intakes and exhaust duct
- A genetic algorithm performs changes in component geometry by means of mesh morphing; each new design is evaluated with a CFD analysis
- Innovative multiobjective genetic algorithm GEDEA, developed at UNIPD, is employed
- Objective function: total pressure loss with penalty function given by distortion index (intake); backpressure and entrainment ratio (exhaust)

TILTOp

- Multi-point multi-objective aerodynamic optimization of the airframe-engine integration into the ERICA tilt-rotor nacelle
- Two different components are separately subjected to the optimization: **intake and exhaust nozzle**
- Objective function: total pressure loss (intake); nozzle backpressure and efficiency (exhaust)
- Optimization process carried out in both hover and cruise conditions
- Optimization process is constrained by satisfactory operation of the particle by-pass separator

CODE-Tilt & DREAM-Tilt

CODE-Tilt: Multi-objective aerodynamic optimization of the ERICA tiltrotor fuselage for drag minimization in cruise condition

DREAM-Tilt: Assessment of ERICA tiltrotor fuselage drag reduction by wind tunnel tests at RUAG (Switzerland)

In the framework of the **GRC2**, which is focused on *aerodynamic drag reduction* of different rotorcraft components, the **University of Padova** in collaboration with **Hit09 S.r.I.** is responsible for four different projects: **HEAVYcOPTer, TILTOP, CODE-Tilt, DREAM-Tilt**.

